Table of contents
- 1. Intro to Stats and Collecting Data55m
- 2. Describing Data with Tables and Graphs1h 55m
- 3. Describing Data Numerically1h 45m
- 4. Probability2h 16m
- 5. Binomial Distribution & Discrete Random Variables2h 33m
- 6. Normal Distribution and Continuous Random Variables1h 38m
- 7. Sampling Distributions & Confidence Intervals: Mean1h 3m
- 8. Sampling Distributions & Confidence Intervals: Proportion1h 12m
- 9. Hypothesis Testing for One Sample1h 1m
- 10. Hypothesis Testing for Two Samples2h 8m
- 11. Correlation48m
- 12. Regression1h 4m
- 13. Chi-Square Tests & Goodness of Fit1h 20m
- 14. ANOVA1h 0m
13. Chi-Square Tests & Goodness of Fit
Goodness of Fit Test
Problem 8.R.9
Textbook Question
In Exercises 9 and 10, (a) identify the claim and state Ho and Ha , (b) find the critical value(s) and identify the rejection region(s), (c) find the standardized test statistic z, (d) decide whether to reject or fail to reject the null hypothesis, and (e) interpret the decision in the context of the original claim. Assume the samples are random and independent, and the populations are normally distributed.
A researcher claims that the mean sodium content of sandwiches at Restaurant A is less than the mean sodium content of sandwiches at Restaurant B. The mean sodium content of 22 randomly selected sandwiches at Restaurant A is 670 milligrams. Assume the population standard deviation is 20 milligrams. The mean sodium content of 28 randomly selected sandwiches at Restaurant B is 690 milligrams. Assume the population standard deviation is 30 milligrams. At α=0.05, is there enough evidence to support the claim?

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
8mPlay a video:
Was this helpful?
Watch next
Master Goodness of Fit Test with a bite sized video explanation from Patrick
Start learning