Textbook QuestionIn Exercises 1–8, use the Rational Zero Theorem to list all possible rational zeros for each given function. f(x)=3x^4−11x^3−x^2+19x+6232views
Textbook QuestionUse the factor theorem and synthetic division to determine whether the second polynomial is a factor of the first. See Example 1. x^3-5x^2+3x+1; x-1165views
Textbook QuestionIn Exercises 9–16, a) List all possible rational zeros. b) Use synthetic division to test the possible rational zeros and find an actual zero. c) Use the quotient from part (b) to find the remaining zeros of the polynomial function. f(x)=2x^3−3x^2−11x+6212views
Textbook QuestionIn Exercises 25–32, find an nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing utility, use it to graph the function and verify the real zeros and the given function value. n=3; 1 and 5i are zeros; f(-1) = -104423views
Textbook QuestionShow that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=4x^3-37x^2+50x+60 Find the zero in part (b) to three decimal places.174views
Textbook QuestionFactor ƒ(x) into linear factors given that k is a zero. See Example 2. ƒ(x)=2x^4+x^3-9x^2-13x-5; k=-1 (multiplicity 3)224views
Textbook QuestionShow that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=6x^4+13x^3-11x^2-3x+5 no zero greater than 1250views
Textbook QuestionIn Exercises 47–48, find an nth-degree polynomial function with real coefficients satisfying the given conditions. Verify the real zeros and the given function value. n = 3; 2 and 2 - 3i are zeros; f(1) = -10864views
Textbook QuestionFor each polynomial function, find all zeros and their multiplicities. ƒ(x)=(x+1)^2(x-1)^3(x^2-10)183views
Textbook QuestionFind a polynomial function ƒ(x) of degree 3 with real coefficients that satisfies the given conditions. See Example 4. Zeros of -2, 1, and 0; ƒ(-1)=-1252views
Textbook QuestionFind a polynomial function ƒ(x) of degree 3 with real coefficients that satisfies the given conditions. See Example 4. Zero of -3 having multiplicity 3; ƒ(3)=36318views
Textbook QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=4x^3-x^2+2x-7190views
Textbook QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=6x^4+2x^3+9x^2+x+5189views
Textbook QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=5x^6-6x^5+7x^3-4x^2+x+2196views