How to write a spooky story: tips for English language students

Sam Colley
placeholder
Reading time: 4 minutes

How to write a spooky story: tips and tricks for English language students

Halloween is the perfect time to let your imagination run wild and create a spooky story that will send shivers down your readers' spines. If you're a student learning English, or an ESL teacher hoping to inspire and enthuse your students, writing a Halloween-themed story can be a fun way to practice your English skills. In this blog, we'll guide you through the process of writing a spooky story step by step, from brainstorming ideas to polishing your final draft. Let's get started!

Tips for writing a spooky story
Reproducir
Privacy and cookies

By watching, you agree app can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Step 1: Brainstorming ideas

Before you start writing, take some time to brainstorm ideas for your story. Here are a few tips to help you get started:

  1. Think about classic Halloween themes: Ghosts, haunted houses, witches, vampires and zombies are all great starting points.
  2. Consider the setting: Where will your story take place? A dark forest, an abandoned mansion, or a creepy graveyard can all provide a spooky atmosphere.
  3. Create a protagonist: Who is your main character? Are they a brave hero, a curious child, or someone who accidentally stumbles into a terrifying situation?
  4. Develop a plot: What is the main conflict or problem in your story? How will your protagonist try to solve it? What obstacles will they face?


Step 2: Building your vocabulary

To make your story truly spooky, you'll need to use descriptive language that creates a sense of fear and suspense. Here are some useful words and phrases to include:

  • Adjectives: eerie, haunted, shadowy, sinister, chilling, ghastly, macabre, terrifying
  • Verbs: creak, howl, whisper, shiver, lurk, haunt, vanish, scream
  • Nouns: ghost, phantom, specter, darkness, fog, grave, curse, nightmare


Step 3: Structuring your story

A well-structured story will keep your readers engaged from beginning to end. Here's a simple structure to follow:

  1. Introduction: Introduce your main character and setting. Give a hint of the spooky events to come.
  2. Rising action: Build suspense by describing strange or frightening events that happen to your protagonist.
  3. Climax: The most intense and scary part of your story. This is where your protagonist faces the main conflict or danger.
  4. Falling action: Show the aftermath of the climax. How does your protagonist react? What happens next.
  5. Conclusion: Wrap up your story. Did your protagonist escape the danger? Is there a twist to the ending?

Step 4: Writing your first draft

Now that you have your ideas, vocabulary and structure, it's time to start writing. Don't worry about making it perfect on the first try. Just focus on getting your ideas down on paper. Here are a few tips to keep in mind:

  • Use descriptive language: Paint a vivid picture in your readers' minds by using sensory details –sight, sound, smell, touch, taste.
  • Show, don't tell: Instead of saying "It was scary," describe what makes it scary e.g., "The old house creaked and groaned as if it were alive and a cold breeze sent shivers down my spine".
  • Keep the suspense: Reveal information slowly to keep your readers on edge. Use cliffhangers at the end of paragraphs or chapters to maintain tension.


Step 5: Revising and editing

Once you've written your first draft, take a break and then come back to it with fresh eyes. Here are some questions to ask yourself as you revise and review:

  • Is the story clear and easy to follow?
  • Are the characters well-developed and believable?
  • Is the setting vividly described?
  • Does the plot build suspense and keep the reader engaged?
  • Are there any grammar or spelling mistakes?


Step 6: Sharing your story

After revising and editing your story, it's time to share it with others. You can read it aloud to friends or family, or even share it in your ESL class. Getting feedback from others can help you improve your writing and gain confidence.


Final thoughts

Writing a spooky story can be a thrilling and rewarding experience, especially for ESL students. By following these steps and using descriptive language, you can create a Halloween-themed story that will captivate your readers. So grab a pen, let your imagination run wild, and get ready to scare.
Happy Halloween and happy writing.

If you'd like to see some more hints and tips on how to improve your English language writing, why not take a look at our blogs on 'Creative writing exercises for English language learners' and 'Mastering English with fun and effective exercises'.

More blogs from app

  • Hands typing at a laptop with symbols

    Can computers really mark exams? Benefits of ELT automated assessments

    Por app Languages

    Automated assessment, including the use of Artificial Intelligence (AI), is one of the latest education tech solutions. It speeds up exam marking times, removes human biases, and is as accurate and at least as reliable as human examiners. As innovations go, this one is a real game-changer for teachers and students. 

    However, it has understandably been met with many questions and sometimes skepticism in the ELT community – can computers really mark speaking and writing exams accurately? 

    The answer is a resounding yes. Students from all parts of the world already take AI-graded tests.  aԻ Versanttests – for example – provide unbiased, fair and fast automated scoring for speaking and writing exams – irrespective of where the test takers live, or what their accent or gender is. 

    This article will explain the main processes involved in AI automated scoring and make the point that AI technologies are built on the foundations of consistent expert human judgments. So, let’s clear up the confusion around automated scoring and AI and look into how it can help teachers and students alike. 

    AI versus traditional automated scoring

    First of all, let’s distinguish between traditional automated scoring and AI. When we talk about automated scoring, generally, we mean scoring items that are either multiple-choice or cloze items. You may have to reorder sentences, choose from a drop-down list, insert a missing word- that sort of thing. These question types are designed to test particular skills and automated scoring ensures that they can be marked quickly and accurately every time.

    While automatically scored items like these can be used to assess receptive skills such as listening and reading comprehension, they cannot mark the productive skills of writing and speaking. Every student's response in writing and speaking items will be different, so how can computers mark them?

    This is where AI comes in. 

    We hear a lot about how AI is increasingly being used in areas where there is a need to deal with large amounts of unstructured data, effectively and 100% accurately – like in medical diagnostics, for example. In language testing, AI uses specialized computer software to grade written and oral tests. 

    How AI is used to score speaking exams

    The first step is to build an acoustic model for each language that can recognize speech and convert it into waveforms and text. While this technology used to be very unusual, most of our smartphones can do this now. 

    These acoustic models are then trained to score every single prompt or item on a test. We do this by using human expert raters to score the items first, using double marking. They score hundreds of oral responses for each item, and these ‘Standards’ are then used to train the engine. 

    Next, we validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. If this doesn’t happen for any item, we remove it, as it must match the standard set by human markers. We expect a correlation of between .95-.99. That means that tests will be marked between 95-99% exactly the same as human-marked samples. 

    This is incredibly high compared to the reliability of human-marked speaking tests. In essence, we use a group of highly expert human raters to train the AI engine, and then their standard is replicated time after time.  

    How AI is used to score writing exams

    Our AI writing scoring uses a technology called . LSA is a natural language processing technique that can analyze and score writing, based on the meaning behind words – and not just their superficial characteristics. 

    Similarly to our speech recognition acoustic models, we first establish a language-specific text recognition model. We feed a large amount of text into the system, and LSA uses artificial intelligence to learn the patterns of how words relate to each other and are used in, for example, the English language. 

    Once the language model has been established, we train the engine to score every written item on a test. As in speaking items, we do this by using human expert raters to score the items first, using double marking. They score many hundreds of written responses for each item, and these ‘Standards’ are then used to train the engine. We then validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. 

    The benchmark is always the expert human scores. If our AI system doesn’t closely match the scores given by human markers, we remove the item, as it is essential to match the standard set by human markers.

    AI’s ability to mark multiple traits 

    One of the challenges human markers face in scoring speaking and written items is assessing many traits on a single item. For example, when assessing and scoring speaking, they may need to give separate scores for content, fluency and pronunciation. 

    In written responses, markers may need to score a piece of writing for vocabulary, style and grammar. Effectively, they may need to mark every single item at least three times, maybe more. However, once we have trained the AI systems on every trait score in speaking and writing, they can then mark items on any number of traits instantaneously – and without error. 

    AI’s lack of bias

    A fundamental premise for any test is that no advantage or disadvantage should be given to any candidate. In other words, there should be no positive or negative bias. This can be very difficult to achieve in human-marked speaking and written assessments. In fact, candidates often feel they may have received a different score if someone else had heard them or read their work.

    Our AI systems eradicate the issue of bias. This is done by ensuring our speaking and writing AI systems are trained on an extensive range of human accents and writing types. 

    We don’t want perfect native-speaking accents or writing styles to train our engines. We use representative non-native samples from across the world. When we initially set up our AI systems for speaking and writing scoring, we trialed our items and trained our engines using millions of student responses. We continue to do this now as new items are developed.

    The benefits of AI automated assessment

    There is nothing wrong with hand-marking homework tests and exams. In fact, it is essential for teachers to get to know their students and provide personal feedback and advice. However, manually correcting hundreds of tests, daily or weekly, can be repetitive, time-consuming, not always reliable and takes time away from working alongside students in the classroom. The use of AI in formative and summative assessments can increase assessed practice time for students and reduce the marking load for teachers.

    Language learning takes time, lots of time to progress to high levels of proficiency. The blended use of AI can:

    • address the increasing importance of formative assessmentto drive personalized learning and diagnostic assessment feedback 

    • allow students to practice and get instant feedback inside and outside of allocated teaching time

    • address the issue of teacher workload

    • create a virtuous combination between humans and machines, taking advantage of what humans do best and what machines do best. 

    • provide fair, fast and unbiased summative assessment scores in high-stakes testing.

    We hope this article has answered a few burning questions about how AI is used to assess speaking and writing in our language tests. An interesting quote from Fei-Fei Li, Chief scientist at Google and Stanford Professor describes AI like this:

    “I often tell my students not to be misled by the name ‘artificial intelligence’ — there is nothing artificial about it; A.I. is made by humans, intended to behave [like] humans and, ultimately, to impact human lives and human society.”

    AI in formative and summative assessments will never replace the role of teachers. AI will support teachers, provide endless opportunities for students to improve, and provide a solution to slow, unreliable and often unfair high-stakes assessments.

    Examples of AI assessments in ELT

    At app, we have developed a range of assessments using AI technology.

    Versant

    The Versant tests are a great tool to help establish language proficiency benchmarks in any school, organization or business. They are specifically designed for placement tests to determine the appropriate level for the learner.

    PTE Academic

    The  is aimed at those who need to prove their level of English for a university place, a job or a visa. It uses AI to score tests and results are available within five days. 

    app English International Certificate (PEIC)

    app English International Certificate (PEIC) also uses automated assessment technology. With a two-hour test available on-demand to take at home or at school (or at a secure test center). Using a combination of advanced speech recognition and exam grading technology and the expertise of professional ELT exam markers worldwide, our patented software can measure English language ability.