Can computers really mark exams? Benefits of ELT automated assessments

app Languages
Hands typing at a laptop with symbols

Automated assessment, including the use of Artificial Intelligence (AI), is one of the latest education tech solutions. It speeds up exam marking times, removes human biases, and is as accurate and at least as reliable as human examiners. As innovations go, this one is a real game-changer for teachers and students. 

However, it has understandably been met with many questions and sometimes skepticism in the ELT community – can computers really mark speaking and writing exams accurately? 

The answer is a resounding yes. Students from all parts of the world already take AI-graded tests.  aԻ Versanttests – for example – provide unbiased, fair and fast automated scoring for speaking and writing exams – irrespective of where the test takers live, or what their accent or gender is. 

This article will explain the main processes involved in AI automated scoring and make the point that AI technologies are built on the foundations of consistent expert human judgments. So, let’s clear up the confusion around automated scoring and AI and look into how it can help teachers and students alike. 

AI versus traditional automated scoring

First of all, let’s distinguish between traditional automated scoring and AI. When we talk about automated scoring, generally, we mean scoring items that are either multiple-choice or cloze items. You may have to reorder sentences, choose from a drop-down list, insert a missing word- that sort of thing. These question types are designed to test particular skills and automated scoring ensures that they can be marked quickly and accurately every time.

While automatically scored items like these can be used to assess receptive skills such as listening and reading comprehension, they cannot mark the productive skills of writing and speaking. Every student's response in writing and speaking items will be different, so how can computers mark them?

This is where AI comes in. 

We hear a lot about how AI is increasingly being used in areas where there is a need to deal with large amounts of unstructured data, effectively and 100% accurately – like in medical diagnostics, for example. In language testing, AI uses specialized computer software to grade written and oral tests. 

How AI is used to score speaking exams

The first step is to build an acoustic model for each language that can recognize speech and convert it into waveforms and text. While this technology used to be very unusual, most of our smartphones can do this now. 

These acoustic models are then trained to score every single prompt or item on a test. We do this by using human expert raters to score the items first, using double marking. They score hundreds of oral responses for each item, and these ‘Standards’ are then used to train the engine. 

Next, we validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. If this doesn’t happen for any item, we remove it, as it must match the standard set by human markers. We expect a correlation of between .95-.99. That means that tests will be marked between 95-99% exactly the same as human-marked samples. 

This is incredibly high compared to the reliability of human-marked speaking tests. In essence, we use a group of highly expert human raters to train the AI engine, and then their standard is replicated time after time.  

How AI is used to score writing exams

Our AI writing scoring uses a technology called . LSA is a natural language processing technique that can analyze and score writing, based on the meaning behind words – and not just their superficial characteristics. 

Similarly to our speech recognition acoustic models, we first establish a language-specific text recognition model. We feed a large amount of text into the system, and LSA uses artificial intelligence to learn the patterns of how words relate to each other and are used in, for example, the English language. 

Once the language model has been established, we train the engine to score every written item on a test. As in speaking items, we do this by using human expert raters to score the items first, using double marking. They score many hundreds of written responses for each item, and these ‘Standards’ are then used to train the engine. We then validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. 

The benchmark is always the expert human scores. If our AI system doesn’t closely match the scores given by human markers, we remove the item, as it is essential to match the standard set by human markers.

AI’s ability to mark multiple traits 

One of the challenges human markers face in scoring speaking and written items is assessing many traits on a single item. For example, when assessing and scoring speaking, they may need to give separate scores for content, fluency and pronunciation. 

In written responses, markers may need to score a piece of writing for vocabulary, style and grammar. Effectively, they may need to mark every single item at least three times, maybe more. However, once we have trained the AI systems on every trait score in speaking and writing, they can then mark items on any number of traits instantaneously – and without error. 

AI’s lack of bias

A fundamental premise for any test is that no advantage or disadvantage should be given to any candidate. In other words, there should be no positive or negative bias. This can be very difficult to achieve in human-marked speaking and written assessments. In fact, candidates often feel they may have received a different score if someone else had heard them or read their work.

Our AI systems eradicate the issue of bias. This is done by ensuring our speaking and writing AI systems are trained on an extensive range of human accents and writing types. 

We don’t want perfect native-speaking accents or writing styles to train our engines. We use representative non-native samples from across the world. When we initially set up our AI systems for speaking and writing scoring, we trialed our items and trained our engines using millions of student responses. We continue to do this now as new items are developed.

The benefits of AI automated assessment

There is nothing wrong with hand-marking homework tests and exams. In fact, it is essential for teachers to get to know their students and provide personal feedback and advice. However, manually correcting hundreds of tests, daily or weekly, can be repetitive, time-consuming, not always reliable and takes time away from working alongside students in the classroom. The use of AI in formative and summative assessments can increase assessed practice time for students and reduce the marking load for teachers.

Language learning takes time, lots of time to progress to high levels of proficiency. The blended use of AI can:

  • address the increasing importance of formative assessmentto drive personalized learning and diagnostic assessment feedback 

  • allow students to practice and get instant feedback inside and outside of allocated teaching time

  • address the issue of teacher workload

  • create a virtuous combination between humans and machines, taking advantage of what humans do best and what machines do best. 

  • provide fair, fast and unbiased summative assessment scores in high-stakes testing.

We hope this article has answered a few burning questions about how AI is used to assess speaking and writing in our language tests. An interesting quote from Fei-Fei Li, Chief scientist at Google and Stanford Professor describes AI like this:

“I often tell my students not to be misled by the name ‘artificial intelligence’ — there is nothing artificial about it; A.I. is made by humans, intended to behave [like] humans and, ultimately, to impact human lives and human society.”

AI in formative and summative assessments will never replace the role of teachers. AI will support teachers, provide endless opportunities for students to improve, and provide a solution to slow, unreliable and often unfair high-stakes assessments.

Examples of AI assessments in ELT

At app, we have developed a range of assessments using AI technology.

Versant

The Versant tests are a great tool to help establish language proficiency benchmarks in any school, organization or business. They are specifically designed for placement tests to determine the appropriate level for the learner.

PTE Academic

The  is aimed at those who need to prove their level of English for a university place, a job or a visa. It uses AI to score tests and results are available within five days. 

More blogs from app

  • Students working together laughing with a laptop in front of them

    Improve student vocabulary and memory with these classroom activities

    By Vaughan Jones

    Reading time: 6.5 minutes

    Vaughan Jones has more than 30 years of experience as an EFL Teacher, Trainer and Author. He’s lived and worked in France, Japan and Spain, and has worked to produce a number of coursebooks, including Focus, an English language learning series for upper-secondary students.

    In this post he explores some tips and techniques for language teachers to help students improve their ability to remember vocabulary.

  • A young woman sat on a laptop outside, smiling and pointing to her laptop

    Three ways to learn new English words

    By Vaughan Jones

    It’s more important for teachers to help students find ways to practice their English outside the classroom. The more efficient students become at autonomous learning, the better they’ll be able to overcome interruptions and make up for lost time.

    It will be even more challenging if you're a self-learner as you do not have a teacher looking over you and steering your learning. But it’s helpful to learn from the teaching world and pick up teacher tips that you can apply to your own studies and techniques.

    Why are learning new words so challenging?

    Students learning new words in English generally progress steadily up until the pre-intermediate and intermediate levels. But after that, they start to struggle.

    This is because there’s a big difference between the volume of the vocabulary that intermediate students and upper-intermediate students need to know.

    • Intermediate (B1/B2 level) students need to know about 2,500 words
    • upper-intermediate (B2/C1 level) students need to know about 7,500-9,000 words.

    That’s a big jump in numbers. But the real challenge is that those 5,000+ new words are not very frequent. Consequently, students don’t encounter them very often, making it difficult to recall them and leap from one level to the next.

    While there’s no simple answer to this problem, there are ways to help students overcome it. The following framework can be a big help in any classroom:

    1. Focus on the most important words:Always teach appropriate words for the levels your students are currently at.
    2. Provide memorable first encounters:You never get a second chance to make a first impression. So, ensure your student's first encounter with a new word is as memorable as possible.
    3. Teach effective word-learning strategies:Provide your students with valuable tools, tactics and resources so that they can learn new words outside the classroom, too.
    4. Organize repeat encounters:Vocabulary works on a “use it or lose it” basis, so ensure your students encounter the vocabulary you want them to learn repeatedly.

    How to teach effective word-learning strategies

    There are three steps to teach students how to learn new words effectively:

    1. Help learners maximize their exposure to English and find opportunities to use English outside the classroom

    Thanks to the internet and technology, there are many ways that students can engage with the English language outside the classroom.

    However, simple exposure to a new language is not enough – it takes much longer and is less effective than active learning. When students do something with the language they’re exposed to; it is far more memorable.

    That’s why it’s crucial for teachers to help their students seek out English in their own time and use the language, turning passive exposure into active learning.

    • Encourage students to read, listen and view things that they’re interested in or passionate about in English. For example, introduce them to new blogs, podcasts, YouTube videos, or TV series that fit their interests – since personalization leads to more effective learning.
    • Help students find ways to use English in different ways. For example, they can start a learning diary, make to-do lists in English, write social media posts, and create word cards to practice their writing. For speaking, they can record voice memos or video stories, take part in Zoom discussions, or participate in speaking projects and live classes.

    2. Provide ways for students to discover the meaning of new words

    It’s crucial to help students improve their guesswork. Instead of asking online translators to translate every time they encounter a new word, they should be able to guess the meaning of new vocabulary differently.

    • One approach is to look at the morphology of words and consider word families. For example, you can ask your students to brainstorm words with a common root. Or, you can have them identify and practice common suffixes.
    • Explore “true friends” or words that are similar in English and your student's native language.
    • Help your students figure out how to guess the meaning of a word from the context. To do this, you must ensure that your students don’t just hear or read new words but also put them into use.

    One way to get students to learn and retain vocabulary is to get them to create word cards:

    • Ask students to collect ten new words that they’re exposed to throughout the week and bring them to class, like a “show and tell” for words.
    • Then have a debate about how useful each of those words is.

    This helps to connect learning inside and outside the classroom, and it’s fun!

    3. Provide students with strategies to consolidate their knowledge of new words

    Finally, teachers should give students ideas on how to memorize words outside the classroom. You can have your students produce word cards and use a Word Store booklet to practice tasks like matching words with images or definitions.

    Lastly, it’s important to teach students memory tricks or mnemonics so they can retain the new words they encounter.