5 STEAM myths debunked

Sarah Hillyard
A teacher sat with students reading
Reading time: 4 minutes

STEAM (Science, Technology, Engineering, Art and Maths) sounds like an overwhelming combination of subjects to teach – and only suitable for expert educators. But the reality is doing STEAM is simpler than you think. Here are 5 common STEAM myths and the truth behind them. We also outline a number of simple activities you try with your students.

1. STEAM requires a lot of time

STEAM projects encourage curiosity, creativity and collaboration in the classroom – but they have a reputation for being preparation-heavy and for requiring a lot of teaching time and energy.

But to get the full benefit of STEAM, there’s no need to plan out a full-blown project that lasts a whole month. In fact, you might integrate just one STEAM lesson into your syllabus. Or a lesson could contain a one-off 10-minute STEAM challenge.

Here are some easy, low-preparation challenges your classes can take part in:

10-minute STEAM challenges:

  • Winter unit: How tall can you build a snowman using paper cups?
  • Shapes theme: Using five toothpicks make a pentagon, two triangles, a letter of the alphabet.
  • Bug project: Can you create a symmetrical butterfly?

2. You need fancy materials to do STEAM

The biggest misconception is around technology. When you think of STEAM, you might imagine you need apps, computers, tablets and robots to teach it successfully. It’s true that you will certainly find STEAM challenges out there that involve extensive supply lists, expensive equipment, knowledge of programming and robotics.

However, in reality, you probably have everything you need already. Technology doesn’t have to be expensive or complicated. It can refer to simple, non-electronic tools and machines, too. Think funnels, measuring cups and screwdrivers, for example. You can use low-cost regular classroom or household items and recyclable materials that learners' families can donate. Toilet paper rolls and cardboard boxes are very popular items in STEAM.

Here is a low-tech activity you can try:

Combine engineering, art and math using cardboard and a pair of scissors

This challenge involves creating 3D self-portrait sculptures in the using only cardboard. First, teach about parts of the face by observing and analyzing some Cubist portraits (eg, explore Georges Braque and Pablo Picasso). Then have learners cut out cardboard shapes and make slits in them to attach together. They create their self-portrait sculptures by fitting the pieces together using the slits so that the final product will stand by itself. Display the self-portraits and talk about them.

3. STEAM is targeted to older learners

Young children are naturally curious about the world around them, and STEAM experiences begin very early in life. They explore with their senses and test their hypotheses about the world, just like scientists do. Much of their play is based on engineering skills, such as building houses with LEGO® bricks. They learn to manipulate tools while they develop their fine motor skills and their awareness of non-electronic technology. They use dramatic play and enjoy getting their hands full of paint while engaged in art. They learn about maths concepts very early on, such as size (big and small toys), quantities of things, and even babies start using the word “more” if they’re still hungry.

Check out this simple STEAM experiment to learn about plants and their needs.

How do plants eat and drink?

Have students put water and food dye in a pot. Put a white flower in the water. Ask students to guess what will happen.

After a few days, students should check their flowers and observe how it has changed color. They must then record their results. Extend the experiment by asking if they can make their flowers two colors.

Example from English Code Student's Book

4. You have to be an expert to teach STEAM

Educators widely believed that teaching STEAM requires having expertise in all these disciplines. In reality, while some basic knowledge about the concepts and processes behind the challenges is ideal, it is up to you to decide what you feel comfortable teaching.

What’s really important is that the learners master the skills behind STEAM, that is collaboration, critical thinking, creativity and inquiry. Rather than being an expert, the teacher needs to facilitate learning and discovery.

Here’s a simple activity to demonstrate this:

Building a ramp

In this activity, your students will build ramps to test how toys roll/slide down them. This activity covers the following disciplines:

  • Physics: the science involved in creating a stable structure and moving objects
  • Technology: using a simple machine that allows objects to move
  • Engineering and design: planning and building structures to achieve a result
  • Mathematics: reasoning about distance and numbers

Find out more about this ramp challenge in our next STEAM blog (coming soon).

5. You either teach STEAM or teach your curriculum

Some teachers think that you have to stop teaching your regular lessons to do STEAM. However, this is not the case. It’s key to think of ways to connect the challenges with themes and units of work that you plan to teach and integrate them. STEAM can coexist with literacy programs, mindfulness programs or anything else you are teaching.

Here’s an example:

Shadow projector project

If you’re teaching a unit on Space and Planets, make a shadow projector.

Have learners cover one end of a cardboard tube with some thick transparent tape. They should then draw a star, planet, sun or moon on the tape with a permanent marker. Next, have them shine a flashlight through the tubes in your darkened classroom and describe the night sky. They can explore how to make the sky items bigger or smaller by moving the source of light.

More blogs from app

  • A girl sat at a desk with a laptop and notepad studying and taking notes

    AI scoring vs human scoring for language tests: What's the difference?

    By Charlotte Guest
    Reading time: 6 minutes

    When entering the world of language proficiency tests, test takers are often faced with a dilemma: Should they opt for tests scored by humans or those assessed by artificial intelligence (AI)? The choice might seem trivial at first, but understanding the differences between AI scoring and human language test scoring can significantly impact preparation strategy and, ultimately, determine test outcomes.

    The human touch in language proficiency testing and scoring

    Historically, language tests have been scored by human assessors. This method leverages the nuanced understanding that humans have of language, including idiomatic expressions, cultural references, and the subtleties of tone and even writing style, akin to the capabilities of the human brain. Human scorers can appreciate the creative and original use of language, potentially rewarding test takers for flair and originality in their answers. Scorers are particularly effective at evaluating progress or achievement tests, which are designed to assess a student's language knowledge and progress after completing a particular chapter, unit, or at the end of a course, reflecting how well the language tester is performing in their language learning studies.

    One significant difference between human and AI scoring is how they handle context. Human scorers can understand the significance and implications of a particular word or phrase in a given context, while AI algorithms rely on predetermined rules and datasets.

    The adaptability and learning capabilities of human brains contribute significantly to the effectiveness of scoring in language tests, mirroring how these brains adjust and learn from new information.

    Advantages:

    • Nuanced understanding: Human scorers are adept at interpreting the complexities and nuances of language that AI might miss.
    • Contextual flexibility: Humans can consider context beyond the written or spoken word, understanding cultural and situational implications.

    Disadvantages:

    • Subjectivity and inconsistency: Despite rigorous training, human-based scoring can introduce a level of subjectivity and variability, potentially affecting the fairness and reliability of scores.
    • Time and resource intensive: Human-based scoring is labor-intensive and time-consuming, often resulting in longer waiting times for results.
    • Human bias: Assessors, despite being highly trained and experienced, bring their own perspectives, preferences and preconceptions into the grading process. This can lead to variability in scoring, where two equally competent test takers might receive different scores based on the scorer's subjective judgment.

    The rise of AI in language test scoring

    With advancements in technology, AI-based scoring systems have started to play a significant role in language assessment. These systems utilize algorithms and natural language processing (NLP) techniques to evaluate test responses. AI scoring promises objectivity and efficiency, offering a standardized way to assess language and proficiency level.

    Advantages:

    • Consistency: AI scoring systems provide a consistent scoring method, applying the same criteria across all test takers, thereby reducing the potential for bias.
    • Speed: AI can process and score tests much faster than human scorers can, leading to quicker results turnaround.
    • Great for more nervous testers: Not everyone likes having to take a test in front of a person, so AI removes that extra stress.

    Disadvantages:

    • Lack of nuance recognition: AI may not fully understand subtle nuances, creativity, or complex structures in language the way a human scorer can.
    • Dependence on data: The effectiveness of AI scoring is heavily reliant on the data it has been trained on, which can limit its ability to interpret less common responses accurately.

    Making the choice

    When deciding between tests scored by humans or AI, consider the following factors:

    • Your strengths: If you have a creative flair and excel at expressing original thoughts, human-scored tests might appreciate your unique approach more. Conversely, if you excel in structured language use and clear, concise expression, AI-scored tests could work to your advantage.
    • Your goals: Consider why you're taking the test. Some organizations might prefer one scoring method over the other, so it's worth investigating their preferences.
    • Preparation time: If you're on a tight schedule, the quicker turnaround time of AI-scored tests might be beneficial.

    Ultimately, both scoring methods aim to measure and assess language proficiency accurately. The key is understanding how each approach aligns with your personal strengths and goals.

    The bias factor in language testing

    An often-discussed concern in both AI and human language test scoring is the issue of bias. With AI scoring, biases can be ingrained in the algorithms due to the data they are trained on, but if the system is well designed, bias can be removed and provide fairer scoring.

    Conversely speaking, human scorers, despite their best efforts to remain objective, bring their own subconscious biases to the evaluation process. These biases might be related to a test taker's accent, dialect, or even the content of their responses, which could subtly influence the scorer's perceptions and judgments. Efforts are continually made to mitigate these biases in both approaches to ensure a fair and equitable assessment for all test takers.

    Preparing for success in foreign language proficiency tests

    Regardless of the scoring method, thorough preparation remains, of course, crucial. Familiarize yourself with the test format, practice under timed conditions, and seek feedback on your performance, whether from teachers, peers, or through self-assessment tools.

    The distinctions between AI scoring and human in language tests continue to blur, with many exams now incorporating a mix of both to have students leverage their respective strengths. Understanding and interpreting written language is essential in preparing for language proficiency tests, especially for reading tests. By understanding these differences, test takers can better prepare for their exams, setting themselves up for the best possible outcome.

    Will AI replace human-marked tests?

    The question of whether AI will replace markers in language tests is complex and multifaceted. On one hand, the efficiency, consistency and scalability of AI scoring systems present a compelling case for their increased utilization. These systems can process vast numbers of tests in a fraction of the time it takes markers, providing quick feedback that is invaluable in educational settings. On the other hand, the nuanced understanding, contextual knowledge, flexibility, and ability to appreciate the subtleties of language that human markers bring to the table are qualities that AI has yet to fully replicate.

    Both AI and human-based scoring aim to accurately assess language proficiency levels, such as those defined by the Common European Framework of Reference for Languages or the Global Scale of English, where a level like C2 or 85-90 indicates that a student can understand virtually everything, master the foreign language perfectly, and potentially have superior knowledge compared to a native speaker.

    The integration of AI in language testing is less about replacement and more about complementing and enhancing the existing processes. AI can handle the objective, clear-cut aspects of language testing, freeing markers to focus on the more subjective, nuanced responses that require a human touch. This hybrid approach could lead to a more robust, efficient and fair assessment system, leveraging the strengths of both humans and AI.

    Future developments in AI technology and machine learning may narrow the gap between AI and human grading capabilities. However, the ethical considerations, such as ensuring fairness and addressing bias, along with the desire to maintain a human element in education, suggest that a balanced approach will persist. In conclusion, while AI will increasingly play a significant role in language testing, it is unlikely to completely replace markers. Instead, the future lies in finding the optimal synergy between technological advancements and human judgment to enhance the fairness, accuracy and efficiency of language proficiency assessments.

    Tests to let your language skills shine through

    Explore app's innovative language testing solutions today and discover how we are blending the best of AI technology and our own expertise to offer you reliable, fair and efficient language proficiency assessments. We are committed to offering reliable and credible proficiency tests, ensuring that our certifications are recognized for job applications, university admissions, citizenship applications, and by employers worldwide. Whether you're gearing up for academic, professional, or personal success, our tests are designed to meet your diverse needs and help unlock your full potential.

    Take the next step in your language learning journey with app and experience the difference that a meticulously crafted test can make.

  • Woman standing outside with a coffee and headphones

    Using language learning as a form of self-care for wellbeing

    By Charlotte Guest
    Reading time: 6.5 minutes

    In today’s fast-paced world, finding time for self-care is more important than ever. Among a range of traditional self-care practices, learning a language emerges as an unexpected but incredibly rewarding approach. Learning a foreign language is a key aspect of personal development and can help your mental health, offering benefits like improved career opportunities, enhanced creativity, and the ability to connect with people from diverse cultures.

  • Friends walking outdoors chatting to eachother

    Understanding dialects in the English language

    By Charlotte Guest
    Reading time: 7 minutes

    Language reflects the diversity of human culture and society. Among its most fascinating parts are dialects, regional or social varieties of a language distinguished by pronunciation, grammar and vocabulary. Dialects are the heartbeat of a language, pulsing with the rich stories, traditions and identities of those who speak them.

    Understanding a language and dialect, and its significance, can enrich the learning experience for language learners, offering a deeper appreciation of a language and its speakers. Dialects are not just variations within a language; they are often considered separate entities, each with its own rich history and cultural significance, highlighting the complexity and diversity of linguistic expression.

    What exactly is a regional dialect?

    At its core, a dialect is a variation of a language spoken by a particular group of people. However, the distinction between dialects and a different language can often be subjective. These variations can occur due to geographical, social class, ethnic, or historical reasons. While all speakers of a language share the same basic grammar rules and vocabulary, those speaking different dialects might use unique words and slang or have distinct pronunciations, highlighting the lack of an objective difference between dialects and languages.

    For instance, British and American English are two dialects of the English language that are mutually intelligible, meaning speakers of either dialect can understand, and be understood, by the other. They share the same foundational grammar and most of the core vocabulary but differ in pronunciation, spelling, and some aspects of vocabulary and idioms. Similarly, within Britain or the United States, there are numerous regional dialects (e.g., Yorkshire English, Southern American English) that further showcase the diversity within a single language. Some of these dialects are considered by their speakers to be distinct languages, emphasizing the complex nature of linguistic identity and classification.

    What is an example of a dialect?

    An example of dialect variation can be seen in the Italian language, which boasts a wide range of regional dialects, showcasing linguistic diversity with multiple dialects spoken across Italy.

    For example, the Tuscan dialect has historically been recognized as the basis for standard Italian, largely due to its use in influential literature. However, other dialects from regions like Sicily or Lombardy vary significantly from Tuscan Italian in terms of pronunciation, vocabulary and syntax, reflecting the diverse cultural landscapes and histories of Italy’s regions.

    Another example of this variation of dialect within a single language is found in the United Kingdom. For instance, the Cockney dialect, originating from London’s East End, is renowned for its rhyming slang and distinct vowel sounds, serving as a prime example of spoken dialects that emphasize the importance of oral tradition. Contrastingly, the Geordie dialect, native to Newcastle and the surrounding areas, boasts an entirely different set of vocabulary, pronunciation patterns, and even grammatical structures, further highlighting the diverse range of spoken dialects within the standard English language.

    What is the difference between a dialect and an accent?

    The distinction between a dialect and an accent is subtle yet significant. An accent relates solely to differences in pronunciation - the distinct manner in which people say words, often influenced by unique speech patterns that can vary significantly across different languages and regions.

    In contrast, a dialect encompasses not only pronunciation and accent but also includes specific grammar and vocabulary. Accents can be a component of a dialect, but dialects offer a broader spectrum of linguistic variety, including lexical and grammatical differences.

    For instance, someone might speak English with a Scottish accent but use the same grammatical structures and vocabulary as an English speaker from London; however, Scots, a variety spoken in Scotland, is considered a dialect (or even a separate, distinct language, by some) because it possesses unique grammar, vocabulary and pronunciation.

    Why are different dialects important?

    Dialects are more than just linguistic variations; they are windows into communities' cultural and social fabric. They carry with them histories, traditions and the identity of their speakers. Some dialects are even considered 'distinct languages' by their speakers, highlighting the deep cultural significance of these linguistic forms. Learning about dialects, including regional dialects, can thus offer insights into:

    • Cultural contexts: Understanding the dialects of a language, especially regional dialects, can provide language learners with a richer cultural understanding and a more nuanced perspective of the language’s speakers. This exploration into regional dialects reveals the arbitrary distinction between 'standard' and 'nonstandard' dialects, which is often based on social, political, cultural, or historical considerations.
    • Social dynamics: Dialects can reflect social distinctions, historical migrations and contact with other languages, offering clues about social hierarchies, historical conflicts and integrations.
    • Language evolution: Studying dialects reveals how languages change over time, adapting to societies' needs, migrations and innovations.