Explaining computerized English testing in plain English

app Languages
a pair of hands typing at a laptop

Research has shown that automated scoring can give more reliable and objective results than human examiners when evaluating a person’s mastery of English. This is because an automated scoring system is impartial, unlike humans, who can be influenced by irrelevant factors such as a test taker’s appearance or body language. Additionally, automated scoring treats regional accents equally, unlike human examiners who may favor accents they are more familiar with. Automated scoring also allows individual features of a spoken or written test question response to be analyzed independent of one another, so that a weakness in one area of language does not affect the scoring of other areas.

was created in response to the demand for a more accurate, objective, secure and relevant test of English. Our automated scoring system is a central feature of the test, and vital to ensuring the delivery of accurate, objective and relevant results – no matter who the test-taker is or where the test is taken.

Development and validation of the scoring system to ensure accuracy

PTE Academic’s automated scoring system was developed after extensive research and field testing. A prototype test was developed and administered to a sample of more than 10,000 test takers from 158 different countries, speaking 126 different native languages. This data was collected and used to train the automated scoring engines for both the written and spoken PTE Academic items.

To do this, multiple trained human markers assess each answer. Those results are used as the training material for machine learning algorithms, similar to those used by systems like Google Search or Apple’s Siri. The model makes initial guesses as to the scores each response should get, then consults the actual scores to see well how it did, adjusts itself in a few directions, then goes through the training set over and over again, adjusting and improving until it arrives at a maximally correct solution – a solution that ideally gets very close to predicting the set of human ratings.

Once trained up and performing at a high level, this model is used as a marking algorithm, able to score new responses just like human markers would. Correlations between scores given by this system and trained human markers are quite high. The standard error of measurement between app’s system and a human rater is less than that between one human rater and another – in other words, the machine scores are more accurate than those given by a pair of human raters, because much of the bias and unreliability has been squeezed out of them. In general, you can think of a machine scoring system as one that takes the best stuff out of human ratings, then acts like an idealized human marker.

app conducts scoring validation studies to ensure that the machine scores are consistently comparable to ratings given by skilled human raters. Here, a new set of test-taker responses (never seen by the machine) are scored by both human raters and by the automated scoring system. Research has demonstrated that the automated scoring technology underlying PTE Academic produces scores comparable to those obtained from careful human experts. This means that the automated system “acts” like a human rater when assessing test takers’ language skills, but does so with a machine's precision, consistency and objectivity.

Scoring speaking responses with app’s Ordinate technology

The spoken portion of PTE Academic is automatically scored using app’s Ordinate technology. Ordinate technology results from years of research in speech recognition, statistical modeling, linguistics and testing theory. The technology uses a proprietary speech processing system that is specifically designed to analyze and automatically score speech from fluent and second-language English speakers. The Ordinate scoring system collects hundreds of pieces of information from the test takers’ spoken responses in addition to just the words, such as pace, timing and rhythm, as well as the power of their voice, emphasis, intonation and accuracy of pronunciation. It is trained to recognize even somewhat mispronounced words, and quickly evaluates the content, relevance and coherence of the response. In particular, the meaning of the spoken response is evaluated, making it possible for these models to assess whether or not what was said deserves a high score.

Scoring writing responses with Intelligent Essay Assessor™ (IEA)

The written portion of PTE Academic is scored using the Intelligent Essay Assessor™ (IEA), an automated scoring tool powered by app’s state-of-the-art Knowledge Analysis Technologies™ (KAT) engine. Based on more than 20 years of research and development, the KAT engine automatically evaluates the meaning of text, such as an essay written by a student in response to a particular prompt. The KAT engine evaluates writing as accurately as skilled human raters using a proprietary application of the mathematical approach known as Latent Semantic Analysis (LSA). LSA evaluates the meaning of language by analyzing large bodies of relevant text and their meanings. Therefore, using LSA, the KAT engine can understand the meaning of text much like a human.

What aspects of English does PTE Academic assess?

Written scoring

Spoken scoring

  • Word choice
  • Grammar and mechanics
  • Progression of ideas
  • Organization
  • Style, tone
  • Paragraph structure
  • Development, coherence
  • Point of view
  • Task completion
  • Sentence mastery
  • Content
  • Vocabulary
  • Accuracy
  • Pronunciation
  • Intonation
  • Fluency
  • Expressiveness
  • Pragmatics

More blogs from app

  • A teacher holding a tablet in a classroom with students around her also looking at the tablet smiling

    How to motivate and engage students with authentic video

    By Sue Kay
    Reading time: 4 minutes

    Sue Kay has been an ELT materials writer for over 25 years. She is the co-author of app's Focus Second Edition and is one of the co-founders of . In this article, Sue takes us through her experience of using video in the classroom and shows us how to motivate and engage students with authentic video.

    Videos are no longer a novelty

    When I started teaching in the early 80s, video was a novelty in the classroom. We only had one video player for the whole school and had to book it a week in advance. There was very little published material available, but thanks to the rarity factor, the students lapped it up.

    There was no problem with getting them motivated, even if the lessons accompanying the videos were not particularly exciting and consisted mainly of comprehension questions. Lucky for me, our school had a very dynamic Director of Studies who gave great teacher training sessions and I was very taken with a presentation he did on active viewing tasks.

    I was, and still am, a big fan of the Communicative Approach and I embraced the more interactive video tasks enthusiastically: freeze frame and predict, watch with the sound down and guess what people are saying, listen with the screen hidden to guess the action, etc.

    When I’m preparing a video lesson, I still try to include at least one of these activities because the information gap provides an ideal motivation for students to watch the video and check their ideas.