Explaining computerized English testing in plain English

app Languages
a pair of hands typing at a laptop

Research has shown that automated scoring can give more reliable and objective results than human examiners when evaluating a person’s mastery of English. This is because an automated scoring system is impartial, unlike humans, who can be influenced by irrelevant factors such as a test taker’s appearance or body language. Additionally, automated scoring treats regional accents equally, unlike human examiners who may favor accents they are more familiar with. Automated scoring also allows individual features of a spoken or written test question response to be analyzed independent of one another, so that a weakness in one area of language does not affect the scoring of other areas.

was created in response to the demand for a more accurate, objective, secure and relevant test of English. Our automated scoring system is a central feature of the test, and vital to ensuring the delivery of accurate, objective and relevant results – no matter who the test-taker is or where the test is taken.

Development and validation of the scoring system to ensure accuracy

PTE Academic’s automated scoring system was developed after extensive research and field testing. A prototype test was developed and administered to a sample of more than 10,000 test takers from 158 different countries, speaking 126 different native languages. This data was collected and used to train the automated scoring engines for both the written and spoken PTE Academic items.

To do this, multiple trained human markers assess each answer. Those results are used as the training material for machine learning algorithms, similar to those used by systems like Google Search or Apple’s Siri. The model makes initial guesses as to the scores each response should get, then consults the actual scores to see well how it did, adjusts itself in a few directions, then goes through the training set over and over again, adjusting and improving until it arrives at a maximally correct solution – a solution that ideally gets very close to predicting the set of human ratings.

Once trained up and performing at a high level, this model is used as a marking algorithm, able to score new responses just like human markers would. Correlations between scores given by this system and trained human markers are quite high. The standard error of measurement between app’s system and a human rater is less than that between one human rater and another – in other words, the machine scores are more accurate than those given by a pair of human raters, because much of the bias and unreliability has been squeezed out of them. In general, you can think of a machine scoring system as one that takes the best stuff out of human ratings, then acts like an idealized human marker.

app conducts scoring validation studies to ensure that the machine scores are consistently comparable to ratings given by skilled human raters. Here, a new set of test-taker responses (never seen by the machine) are scored by both human raters and by the automated scoring system. Research has demonstrated that the automated scoring technology underlying PTE Academic produces scores comparable to those obtained from careful human experts. This means that the automated system “acts” like a human rater when assessing test takers’ language skills, but does so with a machine's precision, consistency and objectivity.

Scoring speaking responses with app’s Ordinate technology

The spoken portion of PTE Academic is automatically scored using app’s Ordinate technology. Ordinate technology results from years of research in speech recognition, statistical modeling, linguistics and testing theory. The technology uses a proprietary speech processing system that is specifically designed to analyze and automatically score speech from fluent and second-language English speakers. The Ordinate scoring system collects hundreds of pieces of information from the test takers’ spoken responses in addition to just the words, such as pace, timing and rhythm, as well as the power of their voice, emphasis, intonation and accuracy of pronunciation. It is trained to recognize even somewhat mispronounced words, and quickly evaluates the content, relevance and coherence of the response. In particular, the meaning of the spoken response is evaluated, making it possible for these models to assess whether or not what was said deserves a high score.

Scoring writing responses with Intelligent Essay Assessor™ (IEA)

The written portion of PTE Academic is scored using the Intelligent Essay Assessor™ (IEA), an automated scoring tool powered by app’s state-of-the-art Knowledge Analysis Technologies™ (KAT) engine. Based on more than 20 years of research and development, the KAT engine automatically evaluates the meaning of text, such as an essay written by a student in response to a particular prompt. The KAT engine evaluates writing as accurately as skilled human raters using a proprietary application of the mathematical approach known as Latent Semantic Analysis (LSA). LSA evaluates the meaning of language by analyzing large bodies of relevant text and their meanings. Therefore, using LSA, the KAT engine can understand the meaning of text much like a human.

What aspects of English does PTE Academic assess?

Written scoring

Spoken scoring

  • Word choice
  • Grammar and mechanics
  • Progression of ideas
  • Organization
  • Style, tone
  • Paragraph structure
  • Development, coherence
  • Point of view
  • Task completion
  • Sentence mastery
  • Content
  • Vocabulary
  • Accuracy
  • Pronunciation
  • Intonation
  • Fluency
  • Expressiveness
  • Pragmatics

More blogs from app

  • A parent and their child laying on the floor drawing together on a large peice of paper

    Raising bilingual kids: Sharing your family language at home

    By Charlotte Guest
    Reading time: 3 minutes

    A shared language is central to many families, and this can carry extra meaning when your children are growing up in a country that speaks a different language. It's not just about words; it's about culture, identity and connection. If you'd like to teach your kids the language that holds a special place in your heart, here are some tips to get you started.

  • A group of students stood around a teacher on a laptop

    The ethical challenges of AI in education

    By
    Reading time: 5 minutes

    AI is revolutionising every industry, and language learning is no exception. AI tools can provide students with unprecedented access to things like real-time feedback, instant translation and AI-generated texts, to name but a few.

    AI can be highly beneficial to language education by enhancing our students’ process of learning, rather than simply being used by students to ‘demonstrate’ a product of learning. However, this is easier said than done, and given that AI is an innovative tool in the classroom, it is crucial that educators help students to maintain authenticity in their work and prevent AI-assisted ‘cheating’. With this in mind, striking a balance between AI integration and academic integrity is critical.

    How AI impacts language learning

    Generative AI tools such as ChatGPT and Gemini have made it easier than ever for students to refine and develop their writing. However, these tools also raise concerns about whether submitted texts are student-produced, and if so, to what extent. If students rely on text generation tools instead of their own skills, our understanding of our students’ abilities may not reflect their true proficiency.

    Another issue is that if students continue to use AI for a skill they are capable of doing on their own, they’re likely to eventually lose that skill or become significantly worse at it.

    These points create a significant ethical dilemma:

    • How does AI support learning, or does it (have the potential to) replace the learning process?
    • How can educators differentiate between genuine student ability and AI-assisted responses?

    AI-integration strategies

    There are many ways in which educators can integrate AI responsibly, while encouraging our learners to do so too.

    1.Redesign tasks to make them more ‘AI-resistant’

    No task can be completely ‘AI-resistant’, but there are ways in which teachers can adapt coursebook tasks or take inspiration from activities in order to make them less susceptible to being completed using AI.

    For example:

    • Adapt writing tasks to be hyperlocal or context-specific. Generative AI is less likely to be able to generate texts that are context-bound. Focus on local issues and developments, as well as school or classroom-related topics. A great example is having students write a report on current facilities in their classroom and suggestions for improving the learning environment.
    • Focus on the process of writing rather than the final product. Have students use mind maps to make plans for their writing, have them highlight notes from this that they use in their text and then reflect on the steps they took once they’ve written their piece.
    • Use multimodal learning. Begin a writing task with a class survey, debate or discussion, then have students write up their findings into a report, essay, article or other task type.
    • Design tasks with skill-building at the core. Have students use their critical thinking skills to analyse what AI produces, creatively adapt its output and problem solve by fact-checking AI-generated text.

    2.Use AI so that students understand you know how to use it

    Depending on the policies in your institution, if you can use AI in the classroom with your students, they will see that you know about different AI tools and their output. A useful idea is to generate a text as a class, and have students critically analyse the AI-generated text. What do they think was done well? What could be improved? What would they have done differently?

    You can also discuss the ethical implications of AI in education (and other industries) with your students, to understand their view on it and better see in what situations they might see AI as a help or a hindrance.

    3.Use the GSE Learning Objectives to build confidence in language abilities

    Sometimes, students might turn to AI if they don’t know where to start with a task or lack confidence in their language abilities. With this in mind, it’s important to help your students understand where their language abilities are and what they’re working towards, with tangible evidence of learning. This is where the GSE Learning Objectives can help.

    The Global Scale of English (GSE) provides detailed, skill-specific objectives at every proficiency level, from 10 to 90. These can be used to break down complex skills into achievable steps, allowing students to see exactly what they need to do to improve their language abilities at a granular level.

    • Start by sharing the GSE Learning Objectives with students at the start of class to ensure they know what the expectations and language goals are for the lesson. At the end of the lesson, you can then have students reflect on their learning and find evidence of their achievement through their in-class work and what they’ve produced or demonstrated.
    • Set short-term GSE Learning Objectives for the four key skills – speaking, listening, reading and writing. That way, students will know what they’re working towards and have a clear idea of their language progression.
  • A teacher stood by a long wooden desk where her students are sat smiling at her

    What’s it like to teach English in France?

    By Steffanie Zazulak
    Reading time: 3 minutes

    Kirsty Murray taught English for a year at a collège (the French equivalent of a secondary school) in Villers-Cotterêts: a town in the north of France known for being the birthplace of Alexandre Dumas. She taught mixed-ability groups of 11- to 16-year-olds, with classes ranging in size from 10 to 35 students. Here, she shares the five lessons she learned from the experience.