English for employability: Why teaching general English is not enough

Ehsan Gorji
Ehsan Gorji
A teacher stood at the front of the class talking to her class
Reading time: 4 minutes

Many English language learners are studying English with the aim of getting down to the nitty-gritty of the language they need for their profession. Whether the learner is an engineer, a lawyer, a nanny, a nurse, a police officer, a cook, or a salesperson, simply teaching general English or even English for specific purposes is not enough. We need to improve our learners’ skills for employability.

The four maxims of conversation

In his article Logic and Conversation, Paul Grice, a philosopher of language, proposes that every conversation is based on four maxims: quantity, quality, relation and manner. He believes that if these maxims combine successfully, then the best conversation will take place and the right message will be delivered to the right person at the right time.

The four maxims take on a deeper significance when it comes to the workplace, where things are often more formal and more urgent. Many human resources (HR) managers have spent hours fine-tuning workplace conversations simply because a job candidate or employee has not been adequately educated to the level of English language that a job role demands. This, coupled with the fact that many companies across the globe are adopting English as their official corporate language, has resulted in a new requirement in the world of business: mastery of the English language.

It would not be satisfactory for an employee to be turned down for a job vacancy, to be disqualified after a while; or fail to fulfil his or her assigned tasks, because their English language profile either does not correlate with what the job fully expects or does not possess even the essential must-have can-dos of the job role.

How the GSE Job Profiles can help

The Job Profiles within the can help target those ‘must-have can-dos’ related to various job roles. The ‘Choose Learner’ drop-down menu offers the opportunity to view GSE Learning Objectives for four learner types: in this case, select ‘Professional Learners’. You can then click on the ‘Choose Job Role’ button to narrow down the objectives specific for a particular job role – for example, ‘Office and Administrative Support’ and then ‘Hotel, Motel and Resort Desk Clerks’.

Then, I can choose the GSE/CEFR range I want to apply to my results. In this example, I would like to know what English language skills a hotel desk clerk is expected to master for B1-B1+/GSE: 43-58.

Screenshot of gse toolkit

When I click ‘Show Results’, I am presented with a list of 13 learning objectives in the four skills of reading, listening, speaking and writing. For example:

  • Speaking:Can suggest a resolution to a conflict in a simple negotiation using fixed expressions.(B1+/GSE 53)
  • Reading:Can understand clearly written, straightforward instructions on how to use a piece of equipment. (B1/GSE 46)

Concentrating on specific skills

The Professional section of the GSE Teacher Toolkit also has the option to select learning objectives according to a specific business skill. Consider this scenario: Ms. Lahm is an HR manager at the imaginary LydoApps company, which designs and sells computer programs and apps in Germany. She already knows her team has the following English language profile:

Team 1

English language profile: GSE 10-42 / <A1-A2+

Number of employees: 15

Nationality: German

Department: Print programs

Team 2

English language profile: GSE 10-42 / <A1-A2+

Number of employees: 12

Nationality: German

Department: Packages

Team 3

English language profile: GSE 10-50 / B1

Number of employees: 9

Nationality: German

Department: Customer care

Team 4

English language profile: GSE 10-50 / B1

Number of employees: 5

Nationality: German

Department: Design engineering

Team 5

English language profile: GSE 10-58 / B1+

Number of employees: 3

Nationality: German

Department: Overseas

Ms. Lahm wishes to critically check what skills her Customer Care employees need to answer telephone calls in English. She selects ‘Business Skills’ and then ‘Telephoning’, with a GSE/CEFR range of 10-50.

Ms Lahm now has 28 GSE Learning Objectives related to English telephoning, for example:

  • Can introduce themselves on the phone and close a simple call. (A2/GSE 33)
  • Can ask for repetition or clarification on the phone in a simple way. (A2/GSE 35)
  • Can answer simple work-related questions on the phone using fixed expressions. (A2+/GSE 40)
  • Can use simple appropriate language to check that information has been understood on the phone.(B1/GSE 45)

Ms. Lahm can now use these GSE Learning Objectives to help organize her current team and recruit new colleagues with the appropriate skills for the job.

Try out the GSE Teacher Toolkit today

The GSE Teacher Toolkit is a fantastic resource when it comes to teaching English. General English is often not enough – and it can be daunting for teachers when they are faced with the whole of the language to teach.

Both teachers and HR managers can use the Job Profiles feature of the GSE Teacher Toolkit to examine more than 200 jobs for their English language profile and, by targeting these specific language functions, can prepare students for their chosen careers and recruit candidates with the level of English required to successfully perform a given job.

More blogs from app

  • Hands typing at a laptop with symbols

    Can computers really mark exams? Benefits of ELT automated assessments

    By app Languages

    Automated assessment, including the use of Artificial Intelligence (AI), is one of the latest education tech solutions. It speeds up exam marking times, removes human biases, and is as accurate and at least as reliable as human examiners. As innovations go, this one is a real game-changer for teachers and students. 

    However, it has understandably been met with many questions and sometimes skepticism in the ELT community – can computers really mark speaking and writing exams accurately? 

    The answer is a resounding yes. Students from all parts of the world already take AI-graded tests.  aԻ Versanttests – for example – provide unbiased, fair and fast automated scoring for speaking and writing exams – irrespective of where the test takers live, or what their accent or gender is. 

    This article will explain the main processes involved in AI automated scoring and make the point that AI technologies are built on the foundations of consistent expert human judgments. So, let’s clear up the confusion around automated scoring and AI and look into how it can help teachers and students alike. 

    AI versus traditional automated scoring

    First of all, let’s distinguish between traditional automated scoring and AI. When we talk about automated scoring, generally, we mean scoring items that are either multiple-choice or cloze items. You may have to reorder sentences, choose from a drop-down list, insert a missing word- that sort of thing. These question types are designed to test particular skills and automated scoring ensures that they can be marked quickly and accurately every time.

    While automatically scored items like these can be used to assess receptive skills such as listening and reading comprehension, they cannot mark the productive skills of writing and speaking. Every student's response in writing and speaking items will be different, so how can computers mark them?

    This is where AI comes in. 

    We hear a lot about how AI is increasingly being used in areas where there is a need to deal with large amounts of unstructured data, effectively and 100% accurately – like in medical diagnostics, for example. In language testing, AI uses specialized computer software to grade written and oral tests. 

    How AI is used to score speaking exams

    The first step is to build an acoustic model for each language that can recognize speech and convert it into waveforms and text. While this technology used to be very unusual, most of our smartphones can do this now. 

    These acoustic models are then trained to score every single prompt or item on a test. We do this by using human expert raters to score the items first, using double marking. They score hundreds of oral responses for each item, and these ‘Standards’ are then used to train the engine. 

    Next, we validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. If this doesn’t happen for any item, we remove it, as it must match the standard set by human markers. We expect a correlation of between .95-.99. That means that tests will be marked between 95-99% exactly the same as human-marked samples. 

    This is incredibly high compared to the reliability of human-marked speaking tests. In essence, we use a group of highly expert human raters to train the AI engine, and then their standard is replicated time after time.  

    How AI is used to score writing exams

    Our AI writing scoring uses a technology called . LSA is a natural language processing technique that can analyze and score writing, based on the meaning behind words – and not just their superficial characteristics. 

    Similarly to our speech recognition acoustic models, we first establish a language-specific text recognition model. We feed a large amount of text into the system, and LSA uses artificial intelligence to learn the patterns of how words relate to each other and are used in, for example, the English language. 

    Once the language model has been established, we train the engine to score every written item on a test. As in speaking items, we do this by using human expert raters to score the items first, using double marking. They score many hundreds of written responses for each item, and these ‘Standards’ are then used to train the engine. We then validate the trained engine by feeding in many more human-marked items, and check that the machine scores are very highly correlated to the human scores. 

    The benchmark is always the expert human scores. If our AI system doesn’t closely match the scores given by human markers, we remove the item, as it is essential to match the standard set by human markers.

    AI’s ability to mark multiple traits 

    One of the challenges human markers face in scoring speaking and written items is assessing many traits on a single item. For example, when assessing and scoring speaking, they may need to give separate scores for content, fluency and pronunciation. 

    In written responses, markers may need to score a piece of writing for vocabulary, style and grammar. Effectively, they may need to mark every single item at least three times, maybe more. However, once we have trained the AI systems on every trait score in speaking and writing, they can then mark items on any number of traits instantaneously – and without error. 

    AI’s lack of bias

    A fundamental premise for any test is that no advantage or disadvantage should be given to any candidate. In other words, there should be no positive or negative bias. This can be very difficult to achieve in human-marked speaking and written assessments. In fact, candidates often feel they may have received a different score if someone else had heard them or read their work.

    Our AI systems eradicate the issue of bias. This is done by ensuring our speaking and writing AI systems are trained on an extensive range of human accents and writing types. 

    We don’t want perfect native-speaking accents or writing styles to train our engines. We use representative non-native samples from across the world. When we initially set up our AI systems for speaking and writing scoring, we trialed our items and trained our engines using millions of student responses. We continue to do this now as new items are developed.

    The benefits of AI automated assessment

    There is nothing wrong with hand-marking homework tests and exams. In fact, it is essential for teachers to get to know their students and provide personal feedback and advice. However, manually correcting hundreds of tests, daily or weekly, can be repetitive, time-consuming, not always reliable and takes time away from working alongside students in the classroom. The use of AI in formative and summative assessments can increase assessed practice time for students and reduce the marking load for teachers.

    Language learning takes time, lots of time to progress to high levels of proficiency. The blended use of AI can:

    • address the increasing importance of formative assessmentto drive personalized learning and diagnostic assessment feedback 

    • allow students to practice and get instant feedback inside and outside of allocated teaching time

    • address the issue of teacher workload

    • create a virtuous combination between humans and machines, taking advantage of what humans do best and what machines do best. 

    • provide fair, fast and unbiased summative assessment scores in high-stakes testing.

    We hope this article has answered a few burning questions about how AI is used to assess speaking and writing in our language tests. An interesting quote from Fei-Fei Li, Chief scientist at Google and Stanford Professor describes AI like this:

    “I often tell my students not to be misled by the name ‘artificial intelligence’ — there is nothing artificial about it; A.I. is made by humans, intended to behave [like] humans and, ultimately, to impact human lives and human society.”

    AI in formative and summative assessments will never replace the role of teachers. AI will support teachers, provide endless opportunities for students to improve, and provide a solution to slow, unreliable and often unfair high-stakes assessments.

    Examples of AI assessments in ELT

    At app, we have developed a range of assessments using AI technology.

    Versant

    The Versant tests are a great tool to help establish language proficiency benchmarks in any school, organization or business. They are specifically designed for placement tests to determine the appropriate level for the learner.

    PTE Academic

    The  is aimed at those who need to prove their level of English for a university place, a job or a visa. It uses AI to score tests and results are available within five days. 

    app English International Certificate (PEIC)

    app English International Certificate (PEIC) also uses automated assessment technology. With a two-hour test available on-demand to take at home or at school (or at a secure test center). Using a combination of advanced speech recognition and exam grading technology and the expertise of professional ELT exam markers worldwide, our patented software can measure English language ability.